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Example : the functions xk 

  

Suppose that f(x)=xk, where x>0 and k is an integer. Then 

(If)(x)=xk+1k+1,(I2f)(x)=xk+2(k+1)(k+2), 

and, more generally, 

(Inf)(x)=k!(n+k)!xn+k=Γ(k+1)Γ(n+k+1)xn+k.(2.2) 

Suppose now that k is not a positive integer. Then we still have 

(Inf)(x)=1(k+1)(k+2)⋯(n+k)xn+k=Γ(k+1)Γ(n+k+1)xn+k. 

We have now shown that (2.2) holds whenever n is a positive integer. " 

Repeated integrals 

 

Given a function f(x) defined when x>0, we can form the indefinite integral 

of f from 0 to x, and we call this (If)(x); thus 

(If)(x)=∫x0f(t)dt. 

If we repeat this process we get the 'second integral' 

(I2f)(x)=∫x0(If)(t)dt=∫x0(∫t0f(s)ds)dt, 

and another integration gives the 'third integral' 

(I3f)(x)=∫x0[∫t0(∫s0f(u)du)ds]dt.(2.1) 

This looks very complicated (and the formula for the n-th integral looks 

even more complicated), so it is a good idea to look at some simple 

cases. " Example : the functions xk 
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Suppose that f(x)=xk, where x>0 and k is an integer. Then 

(If)(x)=xk+1k+1,(I2f)(x)=xk+2(k+1)(k+2), 

and, more generally, 

(Inf)(x)=k!(n+k)!xn+k=Γ(k+1)Γ(n+k+1)xn+k.(2.2) 

Suppose now that k is not a positive integer. Then we still have 

(Inf)(x)=1(k+1)(k+2)⋯(n+k)xn+k=Γ(k+1)Γ(n+k+1)xn+k. 

We have now shown that (2.2) holds whenever n is a positive integer. " 

Cauchy's result 

 

It was Cauchy who showed us how we can look at integrals such as (2.1) in a 

simpler way, and he showed how we can reduce the n repeated integrals in 

(2.1) to just one integral. To be precise, he showed that 

(Inf)(x)=1(n−1)!∫x0(x−t)n−1f(t)dt.(2.3) 

There is nothing to prove here when n=1 because with n=1, (2.3) becomes 

(If)(x)=10!∫x0(x−t)0f(t)dt 

which is just the definition of (If)(x). We shall now prove (2.3) when n=2. Let 

g(x)=∫x0(x−t)f(t)dt ;(2.4) 

this is the right handside of (2.3) when n=2 so we want to show 

that g(x)=(I2f)(x). Observe that 

g(x)=x∫x0f(t)dt−∫x0tf(t)dt,(2.5) 

and if we differentiate both sides of this equation with respect to x (and use the 

product formula for the first term) we get 

g′(x)=[∫x0f(t)dt+xf(x)]−xf(x)=∫x0f(t)dt=(If)(x). 

Now (2.4) implies that g(0)=0, so we now have 
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g(x)=g(x)−g(0)=∫x0g′(t)dt=∫x0(If)(t)dt=(I2f)(x) 

as required. The proof for a general n is similar. We expand the term (x−t)n−1 by 

the Binomial Theorem, and then write g(x) in the manner of (2.5) with all the 

terms xj outside the integral sign. The argument then goes as before, and we 

shall now assume that (2.3) is true for every positive integer n. " 

 

Fractional integrals 

 

The question now is what is (Iαf)(x) when α is any positive number? Following 

exactly the same idea that we used for the factorial function, we now use 

Cauchy's formula (2.3) as the basis for our definition of (Iαf)(x). In fact, for 

every positive α we DEFINE 

(Iαf)(x)=1Γ(α)∫x0(x−t)α−1f(t)dt. 

We recall from the previous article that if α is a positive integer, 

then Γ(α)=(α−1)! so this definition of (Iαf)(x) agrees with (2.3) when α is a 

positive integer. " 

 

Example : the functions xk again 

 

Let us now see what (Iaf)(x) is when f(x)=xk and a is any positive number. Our 

definition implies that 

(Iaf)(x)=1Γ(a)∫x0(x−t)a−1tkdt, 

and if we now make the substitution u=t/x, we obtain 

(Iaf)(x)=xa+kΓ(a)∫10uk(1−u)a−1du. 

We now have another problem, for there is no simple way to evaluate this 
definite integral. In fact, many people have studied this integral at great length 

and, rather remarkably, it turns out to be very closely related to the Gamma 
function. In fact, if we write 

B(x,y)=∫10tx−1(1−t)y−1dt 
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(this is called the Beta function), where x and y are positive, then we get 

B(x,y)=Γ(x)Γ(y)Γ(x+y). 

 
Using this, we now see that 

(Iaf)(x)=xa+kΓ(a)B(k+1,a)=xa+kΓ(a)(Γ(k+1)Γ(a)Γ(a+k+1))=Γ(k+1)Γ(a+k+1)xa+k, 

which agrees with (2.2) in the case when a is an integer. In conclusion, we have 

now shown that if f(x)=xk, and if x>0and a>0, then 

(Iaf)(x)=Γ(k+1)Γ(a+k+1)xa+k. 

 

Example 1 Let us evaluate (I1/2f)(x) when f(x)=x√=x1/2. According to the 

formula, we have 

(I1/2f)(x)=Γ(3/2)Γ(2)x=Γ(3/2)x=12Γ(1/2)x=π√2x. 

 

Example 2 Show that with f(x)=x2, 

(I3/2f)(x)=32105π√x7/2. 

" 

 

Repeated integration again 

 

Suppose that f(x)=xk, and that a and b are positive. Then 

(Ibf)(x)=Γ(k+1)Γ(b+k+1)xb+k=Ag(x), 

say, where g(x)=xb+k. This gives 

Ia(Ibf)(x)=A×(Iag)(x)=Γ(k+1)Γ(b+k+1)×Γ(b+k+1)Γ(a+b+k+1)xa+b+k=(Ia+bf)(x). 

We have now shown that if f is any power of x, then 

(Ia(Ibf))(x)=(Ia+bf)(x)=(Ib(Iaf))(x). 
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In fact, this holds for all functions f but this is not easy to prove. Indeed, 

we shall show in the next article that the corresponding result does NOT 
hold for fractional derivatives. 

The Unit Tangent and the Unit Normal Vectors 

The Unit Tangent Vector 

The derivative of a vector valued function gives a new vector valued function that is 

tangent to the defined curve.  The analogue to the slope of the tangent line is the 

direction of the tangent line.  Since a vector contains a magnitude and a direction, the 

velocity vector contains more information than we need.  We can strip a vector of its 

magnitude by dividing by its magnitude.   

  

Definition of the Unit Tangent Vector 

  Let r(t) be a differentiable vector valued function and v(t) = r'(t) be the velocity 

vector.  Then we define the unit tangent vector by as the unit vector in the direction of 

the velocity vector. 

                                 v(t)  

               T(t)  =                        

                               ||v(t)|| 

  

Example 

Let  

        r(t)  =  t i + et j - 3t2 k 

Find the T(t) and T(0). 

  

Solution 
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We have  

        v(t)  =  r'(t)  =  i + et j - 6t k 

and  

         

To find the unit tangent vector, we just divide 

         

To find T(0) plug in 0 to get 

         

  

 

The Principal Unit Normal Vector 

        A normal vector is a perpendicular vector.  Given a vector v in the space, there are infinitely 

many perpendicular vectors.  Our goal is to select a special vector that is normal to the unit 

tangent vector.  Geometrically, for a non straight curve, this vector is the unique vector that point 

into the curve.  Algebraically we can compute the vector using the following definition. 

  

Definition of the Principal Unit Normal Vector 

Let r(t) be a differentiable vector valued function and let T(t) be the unit tangent 

vector.  Then the principal unit normal vector N(t) is defined by 

                                 T'(t)  

               N(t)  =                        
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                               ||T'(t)|| 

  

  

Comparing this with the formula for the unit tangent vector, if we think of the unit 

tangent vector as a vector valued function, then the principal unit normal vector is the 

unit tangent vector of the unit tangent vector function.  You will find that finding the 

principal unit normal vector is almost always cumbersome.  The quotient rule usually 

rears its ugly head.   

  

Example 

Find the unit normal vector for the vector valued function 

        r(t)  =  ti + t2 j  

and sketch the curve, the unit tangent and unit normal vectors when t = 1. 

  

Solution 

First we find the unit tangent vector 

         

Now use the quotient rule to find T'(t) 

         

Since the unit vector in the direction of a given vector will be the same after multiplying the 

vector by a positive scalar, we can simplify by multiplying by the factor 
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The first factor gets rid of the denominator and the second factor gets rid of the fractional power.  

We have 

         

Now we divide by the magnitude (after first dividing by 2) to get  

         

Now plug in 1 for both the unit tangent vector to get 

                      

The picture below shows the graph and the two vectors. 

             

  

 

Tangential and Normal Components of Acceleration 

Imagine yourself driving down from Echo Summit towards Myers and having your 

brakes fail.  As you are riding you will experience two forces (other than the force of 

terror) that will change the velocity.  The force of gravity will cause the car to 

increase in speed.  A second change in velocity will be caused by the car going around 



28 | P a g e  

 

the curve.  The first component of acceleration is called the tangential component of 

acceleration and the second is called the normal component of acceleration.  As you 

may guess the tangential component of acceleration is in the direction of the unit 

tangent vector and the normal component of acceleration is in the direction of the 

principal unit normal vector.  Once we have T and N, it is straightforward to find the 

two components.  We have 

  

Tangential and Normal Components of Acceleration 

The tangential component of acceleration is  

                

and the normal component of acceleration is  

                

and 

                   a   =   aNN + aTT 

  

Proof 

First notice that  

        v  =  ||v|| T        and        T'  =  ||T'|| N 

Taking the derivative of both sides gives 

        a  =  v'  =  ||v||' T + ||v|| T'  =  ||v||' T + ||v|| ||T' || N  

This tells us that the acceleration vector is in the plane that contains the unit tangent 

vector and the unit  normal vector.  The first equality follows immediately from the 
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definition of the component of a vector in the direction of another vector.  The second 

equalities will be left as exercises. 

  

Example  

Find the tangential and normal components of acceleration for the prior example 

                r(t)  =  ti + t2 j  

  

Solution 

Taking two derivatives, we have 

        a(t)  =  r''(t)  =  2j 

We dot the acceleration vector with the unit tangent and normal vectors to get 

         

         

  

https://ltcconline.net/greenl/courses/107/vectors/dotcros.htm#component
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UNIT-2 

Mechanics 
Definition 

 
 

The branch of physics that deals with the action of forces on bodies and with motion comprised of 
kinetics, statics and kinematics. It is the study of the action of forces on the body and the 
corresponding reaction of the body to the environment. 

Types of Mechanics 

 

Kinematics: Study of motion of objects without taking into account the factor which causes the 
motion that is nature of force 

 

Projectiles: A particle when thrown into space and moves in two dimensions under the influence 
of only gravity and constant acceleration is called projectile. The path traversed by the projectile 
is called trajectory. The trajectory of a projectile which is moving under the influence of a constant 
acceleration is a parabola 

 

Circular Motion: When a particle moves in a plane such that it maintains a constant distance 
from a fixed or moving point then the motion is said to be a Circular motion with respect to that 
fixed point. 

 

Uniform and Non-uniform motion: 

Relative Velocity:  

Newton’s Law of Motion:  

Law of gravitation  

Center of Mass:  

Collisions rotational Motion, fluid Mechanics 
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Comparison between Uniform and Non-Uniform Circular Motion 

Uniform Circular Motion Non-uniform Circular Motion 

Speed is constant Speed is variable 

Angular speed(w) is constant Angular speed (w) is variable 

Angular acceleration is zero Angular acceleration is non-zero 

Tangential acceleration is zero Tangential acceleration is non-zero 

Modulus of acceleration is constant but the 
vector will be variable 

Modulus of acceleration is variable and the vector 
will also be variable 

Acceleration is directed always towards the 
center 

Acceleration is directed always away from the 
center 

 

Relative velocity 

When you are traveling in a car or bus or train, you see the trees, 

buildings and many other things outside going backwards. But are they 

really going backwards? No, you know it pretty well that it’s your 

vehicle that is moving while the trees are stationary on the ground. But 

then why do the trees appear to be moving backwards? Also the co-

passengers with you who are moving appear stationary to you despite 

moving. 

It’s because in your frame both you and your co-passengers are moving 

together. Which means there is no relative velocity between you and the 

passengers.Whereas the trees are stationary while you are moving. 

Therefore trees are moving at some relative velocity with respect to you 

and the other passenger. And that relative velocity is the difference of 

velocities between you and the tree. 
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The relative velocity is the velocity of an object or observer B in the rest 

frame of another object or the observer A. The general formula of 

velocity is : Velocity of B relative to A is = v⃗b−v⃗ a 

This is the only formula that describes the concept of relative velocity. 

When two objects are moving in the same direction, then 

 

 

Consider two trains moving with same speed and in the same direction. 

Even if both the trains are in motion with respect to buildings, trees 

along the two sides of the track, yet to the observer of the train, the 

other train does not seem to be moving at all. the velocity of the train 

appears to be zero. 
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Suppose you are in a car moving at 50mph.The 50 mph is your relative 

velocity as compared to the surface of the earth.At the same time if I am 

sitting next to you your relative velocity compared to me is zero. If we 

were on a bus and you walked forward at 1 mph, your relative velocity 

on the earth would be 51 mph and your relative velocity compared to 

me would be 1 mph. Relative velocity is simply any objects speed 

compared to any other object regardless of its speed. 

Newton's First Law of Motion: 

I. Every object in a state of uniform motion tends to 
remain in that state of motion unless an external 
force is applied to it. 

This we recognize as essentially Galileo's concept of inertia, and this is often 

termed simply the "Law of Inertia". 

Newton's Second Law of Motion: 

 

II. The relationship between an object's mass m, its 
acceleration a, and the applied force F is F = ma. 
Acceleration and force are vectors (as indicated by 
their symbols being displayed in slant bold font); in 
this law the direction of the force vector is the same 
as the direction of the acceleration vector. 

This is the most powerful of Newton's three Laws, because it allows quantitative 

calculations of dynamics: how do velocities change when forces are applied. 

Notice the fundamental difference between Newton's 2nd Law and the dynamics 

of Aristotle: according to Newton, a force causes only a change in velocity (an 

acceleration); it does not maintain the velocity as Aristotle held. 

This is sometimes summarized by saying that under Newton, F = ma, but under 

Aristotle F = mv, where v is the velocity. Thus, according to Aristotle there is 
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only a velocity if there is a force, but according to Newton an object with a 

certain velocity maintains that velocity unless a force acts on it to cause an 

acceleration (that is, a change in the velocity). As we have noted earlier in 

conjunction with the discussion of Galileo, Aristotle's view seems to be more in 

accord with common sense, but that is because of a failure to appreciate the role 

played by frictional forces. Once account is taken of all forces acting in a given 

situation it is the dynamics of Galileo and Newton, not of Aristotle, that are 

found to be in accord with the observations. 

Newton's Third Law of Motion: 

III. For every action there is an equal and opposite 
reaction. 

This law is exemplified by what happens if we step off a boat onto the bank of a 

lake: as we move in the direction of the shore, the boat tends to move in the 

opposite direction (leaving us facedown in the water, if we aren't careful!). 

 

The Four Fundamental Forces of Nature 

The Four Fundamental Forces of Nature are Gravitational force, Weak 
Nuclear force, Electromagnetic force and Strong Nuclear force. The weak and 
strong forces are effective only over a very short range and dominate only at 
the level of subatomic particles. Gravity and Electromagnetic force have 
infinite range. Let’s see each of them in detail. 

 The Four Fundamental Forces and their strengths 

1. Gravitational Force – Weakest force; but infinite range. (Not part 
of standard model) 

2. Weak Nuclear Force – Next weakest; but short range. 
3. Electromagnetic Force – Stronger, with infinite range. 
4. Strong Nuclear Force – Strongest; but short range. 

https://www.clearias.com/standard-particle-model-of-quantum-mechanics/
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Gravitational Force 

The gravitational force is weak, but very long ranged. Furthermore, it is always 
attractive. It acts between any two pieces of matter in the Universe since 
mass is its source. 

Weak Nuclear Force 

The weak force is responsible for radioactive decay and neutrino interactions. 
It has a very short range and. As its name indicates, it is very weak. The weak 
force causes Beta decay ie. the conversion of a neutron into a proton, an 
electron and an antineutrino. 

Electromagnetic Force 

The electromagnetic force causes electric and magnetic effects such as the 
repulsion between like electrical charges or the interaction of bar magnets. It 
is long-ranged, but much weaker than the strong force. It can be attractive or 
repulsive, and acts only between pieces of matter carrying electrical 
charge. Electricity, magnetism, and light are all produced by this force. 

Strong Nuclear Force 

The strong interaction is very strong, but very short-ranged. It is responsible 
for holding the nuclei of atoms together. It is basically attractive, but can be 
effectively repulsive in some circumstances. The strong force is ‘carried’ by 
particles called gluons; that is, when two particles interact through the strong 
force, they do so by exchanging gluons. Thus, the quarks inside of the protons 
and neutrons are bound together by the exchange of the strong nuclear force. 
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What is Pseudo Force? 

A Pseudo force (also called as fictitious force, inertial force or dâ€™Alembert force) is 
an apparent force that acts on all masses whose motion is described using a non-
inertial frame of reference frame, such as rotating reference frame. 
Pseudo force comes in effect when the frame of reference has started acceleration 
compared to a non-accelerating frame. 
The force F does not arise from any physical interaction between two objects, but rather 
from the acceleration â€˜aâ€™ of the non-inertial reference frame itself. As a frame can 
accelerate in any arbitrary way, so can pseudo forces be as arbitrary (but only in direct 
response to the acceleration of the frame). However, four pseudo forces are defined for 
frames accelerated in commonly occurring ways: one by relative acceleration of the 
origin in a straight line (rectilinear acceleration); two involving rotation: Coriolis force and 
Centrifugal force and fourth called Euler force, caused by a variable rate of rotation. 
  

Examples of Pseudo Force: 
For example if you consider a person standing at a bus stop watching an accelerating 
car, he infers that a force is exerted on the car and it is accelerating. Here there is no 
problem and the pseudo force concept is not required  
But, if the person inside the accelerating car is looking at the person standing at the bus 
stop, he finds that the person is accelerating with respect to the car, though no force is 
acting on it. Here, the concept of pseudo force is required to convert the non-inertial 
frame of reference to an equivalent inertial frame of reference. 
  

https://byjus.com/physics/centripetal-and-centrifugal-force/
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Another example Consider a ball hung from the roof of a train by means of an 
inextensible string. If the train is at rest or is moving with a uniform speed in a straight 
line the string will be vertical. A passenger will infer that the net force acting on the ball 
is zero. 
If the train begins to accelerate, then the string will be making an angle with respect to 
the vertical. For the passenger, there are only two forces and they are not collinear. But, 
the ball remains apparently in a state of equilibrium (as long as the acceleration of the 
train is constant). Here, the concept of pseudo force is required. 
  

 

Figure 1: 

Top panel: accelerating car of mass M with passenger of mass m. The force from the axle is (m + 
M)a. In the inertial frame, this is the only force on the car and passenger. 

Center panel: an exploded view in the inertial frame. The passenger is subject to the accelerating 
force ma. The seat (assumed of negligible mass) is compressed between the reaction force â€“ma 
and the applied force from the car ma. The car is subject to the net acceleration force Ma that is the 
difference between the applied force (m + M)a from the axle and the reaction from the seat âˆ’ma. 

Bottom panel: an exploded view in the non-inertial frame. In the non-inertial frame where the car is 
not accelerating, the force from the axle is balanced by a fictitious backward force âˆ’(m + M)a, a 
portion âˆ’Ma applied to the car, and âˆ’ma to the passenger. The car is subject to the fictitious force 
âˆ’Ma and the force (m + M)a from the axle. The difference between these forces ma is applied to 
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the seat, which exerts a reaction âˆ’ma upon the car, so zero net force is applied to the car. The seat 
(assumed massless) transmits the force ma to the passenger, who is subject also to the fictitious 
force âˆ’ma, resulting in zero net force on the passenger. The passenger exerts a reaction force 
âˆ’ma upon the seat, which is therefore compressed. In all frames the compression of the seat is the 
same, and the force delivered by the axle is the same. 

Coriolis Force 

To explain the Coriolis force it is first necessary to explain Coriolis acceleration.  

 

When an object simultaneously rotates about a point and moves relative to that point, an 

acceleration results from this. This acceleration is called Coriolis acceleration.  

 

To illustrate this acceleration, consider a particle P rotating in a plane about point O with 

a constant angular velocity w, and moving radially outwards with a velocity vr. The 

Coriolis acceleration is denoted by ac. It acts in the circumferential direction 

(perpendicular to vr).  
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To gain an intuitive understanding of the acceleration ac, think about what happens as the 

particle P moves radially outwards. It traces a circle of progressively larger radius. Given 

that the angular velocity w is constant, and the velocity of the particle tangent to the circle 

is equal to wR (where R is the radius of the circle), the tangential (circumferential) 

velocity must then increase as a result. The figure below shows the tangential 

velocity vT of the particle P at two consecutive 

instants. 
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Motion in a Central Force Field:- 
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Kinetic energy of the system of particles 

 Let there are n number of particles in a n particle system and these particles possess 
some motion. The motion of the i'th particle of this system would depend on the external 
force Fi acting on it. Let at any time if the velocity of i'th particle be vi then its kinetic 
energy would be 

  
 Let ri be the position vector of the i'th particle w.r.t. O and r'i be the position vector of the 

centre of mass w.r.t. ri ,as shown below in the figure , then  
ri=r'i+Rcm                              (2) 
where Rcm is the position vector of centre of mass of the system w.r.t. O. 
 

 
 Differentiating equation 2 we get 
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where vi is the velocity of i'th particle w.r.t. centre of mass and Vcm is the velocity 
of centre of mass of system of particle. Putting equation 3 in 1 we get, 
 

  
 Sum of Kinetic energy of all the particles can be obtained from equation 4 

 

 
 Now last term in above equation which is 

  
would vanish as it defines the null vector because 
 

  
 Therefore kinetic energy of the system of particles is, 

 

  
where, 
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is the kinetic energy obtained as if all the mass were concentrated at the centre 
of mass and  
 

  
is the kinetic energy of the system of particle w.r.t. the centre of mass. 

 Hence it is clear from equation 6 that kinetic energy of the system of particles 
consists of two parts: the kinetic energy obtained as if all the mass were 
concentrated at the centre of mass plus the kinetic energy of motion about the 
centre of mass. 

 If there were no external force acting on the particle system then the velocity of 
the centre of mass of the system will remain constant and Kinetic Energy of the 
system would also remain constant. 

Two particle system and reduced mass 

 
 

 
 

 Two body problems with central forces can always be reduced to the form of one body 
problems. 

 Consider a system made up of two particles. For an observer in any inertial frame of 
refrence relative motion of these two particles can be represented by the motion of a 
fictitious particle. 

 The mass of this fictetious particle is known as the reduced mass of two particle system. 
 Consider a system of two particles of mass m1 and m2 respectively. Let O be the origin 

of any inertial frame of refrance and r1 and r2 be the position vectors of these particles at 
any time t w.r.t. origin O as shown bellow in the figure. 



66 | P a g e  

 

 

  
 If no external force is acting on the system then the force acting on the system would be 

equal to mutual interaction between two particles. Let the force acting on m1 due to 
m2 be F21 and force acting on m2 due to m1 be F12 then equation of motion for particles 
m1 and m2 would be 
 



67 | P a g e  

 

  
putting 3 and 4 in 6 we get  
 

  
but from Newton's first law of motion we have 
F21 = -F12 
then from equation 7 we have  
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is known as reduced mass of the system. 

 This equation 8 represents a one body problem , because it is similar to the equation of 
motion of single particle of mass μ at a vector distance r12 from one of thr two particles, 
considered as the fixed centre of force. 

 Thus original problem involving two particle system has now been reduced to that of one 
particle system which is easier to solve then original two body problem. 
Case 1. m1 << m2 

 If the mass of any one particle in two particle system is very very less in comparison to 
other particle like in earth-satellite system then reduced mass of the system would be 
 

  
 So the reduced mass of the two particle system would be equal to the particle having 

lesser mass. 
Case 2. m1 = m2 = m 

 If the masses o8 the particles of a two particle system are same then 
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 Hence reduced mass of the system would be equal to the one half of the mass of a 
single particle. 

(9) Linear momentum and principle of conservation of linear 
momentum 

 
 

 
 

 Product of mass and velocity of any particle is defined as the linear momentum of the 
particle. It is a vector quantity and its direction is same as the direction of velocity of the 
particle. 

 Linear momentum is represented by p. If m is the mass of the particle moving with 
velocity v then linear momentum of the particle would be 
p=mv 
like v , p also depends on the frame of refrance of the observer. 

 If in a many particle system m1 , m2 , m3 , . . . . . . . . . . . . . , mn are the masses 
and v1 , v2 , v3, . . . . . . . . . . . . ., vn are the velocities of the respective particles then total 
linear momentum of the system would be 

  
where M is the total mass of the system and Vcm is the velocity of centre of mass of the 
system 

 Hence from equation 2 we came to know that total linear momentum of a many particle 
system is equal to the product of the total mass of the system and velocity of centre of 
mass of the system. 
 
 

 Differentiating equation 2 w.r.t. t we get 

  
but , Macm=Fext which is the external force acting on the system. Therefore, 

  
like this the rate of change of momentum of a many particle system comes out to be 
equal to the resultant external force acting on the particle. 
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 If external force acting on the system is zero then, 

  
 Hence we conclude that when resultant external force acting on any particle is zero then 

total linear momentum of the system remains constant. This is known as law of 
conservation of linear momentum. 

 Above equation 5 is equivalent to following scalar quantities 

  
Equation 6 shows the total linear momentum of the system in terms of x , y and z co-
ordinates and also shows that they remain constant or conserved in absence of any 
externally applied force. 

 The law of conservation of linear momentum is the fundamental and exact law of nature. 
No violation of it has ever been found. This law has been established on the basis of 
Newton's law but this law holds true in the situations where Newtonian mechanics fails. 

Centre of mass frame of refrance 

 If we attach an inertial frame of refrance with the centre of mass of many particle system 
then centre of mass in that frame of refrance would be at rest or, Vcm=0 , and such type 
of refrance frames are known as centre of mass frame of refrance. 

 Total linear momentum of a many particle system is zero in centre of mass frame of 
refrance i.e., pcm=MVcm=0 since Vcm=0.  

 Therefore C-refrance frames are also known as zero momentum refrance frames. 
 Since in absence of any external force the centre of mass of any system moves with 

constant velocity in inertial frame of refrance therefore for a many particle system C-
rame of refrance is an inertial frame of refrence. 

 Refrance frames connected to laboratory are known as L-frame of refrance or lebiratory 
frame of refrance. 

 Collisions 
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 Collision between two particles is defined as mutual interaction between particles for a 
short interval of time as a result of which energy and momentum of particle changes. 

 Collision between two billiard balls or between two automobiles on road are few 
examples of collisions from our everyday life. Even gas atoms and molecules at room 
temperature keep on colliding against each other. 

 For the collision to take place , physical contact is not necessary. In cas of Rutherford 
alpha scattering experiment , the alpha particles are scattered due to electrostatic 
interaction between the alpha particles and the nucleus from a distance i.e., no physical 
contact occurs between the alpha particles and the nucleus. 

 Thus , in physics collision is said to have occured , if two particles physically collide with 
each other or even when the path of motion of one particle is affected by other. 

 In the collision of two particles law of conservation of momentum always holds true but in 
some collisions Kinetic energy is not always conserved. 

 Hence collisions are of two types on the basis of conservation of energy. 
(i) Perfectly elastic collision 

 Those collisions in which both momentum and kinetic energy of system are conserved 
are called elastic collisions for example elastic collision occurs between the molecules of 
a gas. This type of collision mostly takes place between the atoms, electrons and 
protons. 

 Characterstics of elastic collision 
(a) Total momentum is conserved. 
(b) Total energy is conserved. 
(c) Total kinetic energy is conserved. 
(d) Total mechanical energy is not converted into any other form of energy. 
(e) Forces involved during interaction are conservative in nature. 

 Consider two particles whose masses are m1 and m2 respectively and they collide each 
other with velocity u1 and u2 and after collision their velocities 
become v1 and v2 respectively. 

 If collision between these two particles is elastic one then from law of conservation of 
momentum we have 
m1u1 + m2u2 = m1v1 + m2v2 
and from the law of conservation of energy we have 

  
(ii) Perfectly inelastic collision 

 Those collisions in which momentum of system is conserved but kinetic energy of the 
system is not conserved are known as inelastic collision. 

 Here in inelastic collision two bodies stick to each other after collision as a bullet hit its 
target and remain embedded in the target. 

 In this case some of the kinetic energy is converted into heat or is used up in in doing 
work in deforming bodies for example when two cars collide their metal parts are bet out 
of shape. 

 Characterstics of inelastic collision 
(a) Total momentum is conserved. 
(b) Total energy is conserved. 
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(c) Total kinetic energy is not conserved. 
(d) A part or whole of whole mechanical energy may be converted into other forms of 
energy. 
(e) Some or all forces involved during interaction are non-conservative in nature. 

 Consider two particles whose masses are m1 and m2 respectively and they collide each 
other with velocity u1 and u2 respectively.  

 If the collision between these two particles is inelastic then these two particles would 
stick to each other and after collision they move with velocity v then from law of 
conservation of momentum we have 

  
 Kinetic energy of particles before collisions is 

  
and kinetic energy of particles after collisions is  

  
by law of conserevation of energy  

  
where Q is the loss in kinetic energy of particles during collision. 

Head on elastic collision of two particles in L-frame of refrance 

 
 

 
 

 Consider two particles whose masses are m1 and m2 respectively and they collide each 
other with velocity u1 and u2 and after collision their velocities 
become v1 and v2 respectively. 

 Collision between these two particles is head on elastic collision. From law of 
conservation of momentum we have 
m1u1 + m2u2 = m1v1 + m2v2                      (1) 
and from law of conservation of kinetic energy for elastic collision we have 

                      (2) 
rearranging equation 1 and 2 we get 
m1(u1-v1)= m2(v2-u2)                     (3) 
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and 

  
dividing equation 4 by 3 we get  
u1 + v1 = u2 + v2 
u2 - u1 = -(v2 - v1)                     (5) 
where (u2 - u1) is the relative velocity of second particle w.r.t. first particle before collision 
and (v2- v1) is the relative velocity of second particle w.r.t. first after collision. 

 From equation 5 we come to know taht in a perfectly elastic collision the magnitude of 
relative velocity remain unchanged but its direction is reversed. With the help of above 
equations we can find the values of v2 and v1 , so from equation 5 
v1 = v2 - u1 + u2                     (6) 
v2 = v1 + u1 - u2                     (7) 
Now putting the value of v1 from equation 6 in equation 3 we get 
m1(u1 - v2 + u1 - u2) = m2(v2 - u2) 
On solving the above equation we get value of v2 as 

  
 Similarly putting the value of v2 from equation 7 in equation 3 we get  

  
 Total kinetic energy of particles before collision is  

  
and total K.E. of particles after collision is 

  
 Ratio of initial and final K.E. is 

  
 Special cases 

Case I: When the mass of both the particles are equal i.e., m1 = m2 then from equation 8 
and 9 , v2=u1 and v1=u2. Thus if two bodies of equal masses suffer head on elastic 
collision then the particles will exchange their velocities. Exchange of momentum 
between two particles suffering head on elastic collision is maximum when mass of both 
the particles is same. 

Case II: when the target particle is at rest i,e u2=0 

From equation (8) and (9) 
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Hence some part of the KE which is transformed into second particle would be 

  

  
when m1=m2,then in this condition v0=0 and v2=u1 and part of the KE transferred would 
be  
=1 

Therefore after collisom first particle moving with initial velocity u1 would come to rest 

and the second particle which was at rest would start moving with the velocity of first 

particle.Hence in this case when m1=m2 transfer of energy is 100%.if m1 > m2 or 

m1 < m2 ,then energy transformation is not 100% 

 
Case III: 
if m2 >>>> m1 and u2=0 then from equation (10) and (11) 

v1 ≅ -u1 and v2=0                     (13) 
For example when a ball thrown upwards collide with earth 

 
Case IV: 
if m1 >>>> m2 and u2=0 then from equation (10) and (11) 

v1 ≅ u1 and v2=2u1                     (14) 

Therefore when a heavy particle collide with a very light particle at rest ,then the heavy 

particle keeps on moving with the same velocity and the light particle come in motion 

with a velocity double that of heavy particle 
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Head on collison of two particles in C frame of refrence 

 
 

 
 

 Consider two particles of mass m1 and m2 having position vectors r1 and r2 respectively 
And position vector of the CEnter of mass of the system would be Rcm  
then 

  
 

Velocity of the center of mass would be 

  

Intial velocity of the m1 w.r.t center of mass frame of refrence is 

  

Similarly Intial velocity of m2 w.r.t center of mass frame of refrence is 

  

 Total linear momentum before collison in absence of external force in C frame of 
refrence would be 
=m1u1

' +m2u2
' 

=0 

So u2
'
=(m1/m2)u1

'
 

 If v1
' and v2

' are the velocites of mass m1 and m2 respectively after collision then by law 
of conservation of linear momentum 
m1v1

' +m2v2
'=0 

v2
'=(m1/m2)v1

' 
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Since the collision is elastic,Kinetic energy will be conserved 

  

  

From which |v1
'
|=|u1

'
| and |v2

'
|=|u2

'
| 

hence after collison velocities of particles remain unchanged in center of mass frame of 

refrence.If the collision is one dimmension then because of the collsion direction of these 

would be opposite to that of their intial velocites 
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UNIT-3 

Elastic Moduli 

In the stress-strain curve given below, the region within the elastic limit 

(region OA) is of importance to structural and manufacturing sectors 

since it describes the maximum stress a particular material can take 

before being permanently deformed. The modulus of elasticity is simply 

the ratio between stress and strain. Elastic Moduli can be of three 

types, Young’s modulus, Shear modulus, and Bulk modulus. In this 

article, we will understand elastic moduli in detail. 
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Now, Strain is a dimensionless quantity. Hence, the unit of Young’s 

modulus is N/m2 or Pascal (Pa), the same as that of stress. Let’s look at 

Young’s moduli and yield strengths of some materials now: 
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Torsional oscillations 

 

In the Cavendish experiment to measure gravity, we had a quartz fiber dangling from 

a ceiling. Attached to it was some rod with masses on it. The fiber exerts some torque 

when the rod is displaced from its equilibrium position. 

If small angles, you can say the the torque exerted is proportional to the displacement 

from equilibrium  
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This is just like .  is a constant having to do with the properties of 

the materials. 

So applying   

 

 

 

 

or  

 

Again this is just like , so we have except of  we have here . 

 

So the quartz fiber will oscillate back and forth at this angular frequency.  
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Viscosity 
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Have you ever noticed that some liquids like water flow very 
rapidly while some others like castor oil do not flow fast? Why 
is it so? Didn’t that question occur to you yet? Well, if it did, we 
have the answer to it! This is the concept of Viscosity. In this 
chapter, we will study all about the topic and look at the laws 

and examples of the same. Viscosity 

It is the internal resistance to flow possessed by a liquid. The liquids 

which flow slowly, have high internal resistance. This is because of the 

strong intermolecular forces. Therefore, these liquids are more viscous 

and have high viscosity. 

The liquids which flow rapidly have a low internal resistance. This is 

because of the weak intermolecular forces. Hence, they are less viscous 

or have low viscosity. 

 

Laminar Flow 

Consider a liquid flowing through a narrow tube. All parts of the liquids 

do not move through the tube with the same velocity. Imagine the liquid 

to be made up of a large number of thin cylindrical coaxial layers. The 

layers which are in contact with the walls of the tube are almost 

stationary. As we move from the wall towards the centre of the tube, the 

velocity of the cylindrical layers keeps on increasing till it is maximum 

at the centre. 
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This is a laminar flow. It is a type of flow with a regular gradation of 

velocity in going from one layer to the next. As we move from the 

centre towards the walls, the velocity of the layers keeps on decreasing. 

In other words, every layer offers some resistance or friction to the layer 

immediately below it. 

Viscosity is the force of friction which one part of the liquid offers to 

another part of the liquid. The force of friction f between two layers 

each having area A sq cm, separated by a distance dx cm, and having a 

velocity difference of dv cm/sec, is given by: 

f ∝ A ( dv / dx ) 

f = η A ( dv/dx) 

where η  is a constant known as the coefficient of viscosity and dv/dx is 

called velocity gradient. If dx =1 , A = 1 sq cm; dv = 1 cm/sec, then f 

= η. Hence the coefficient of viscosity may be defined as the force of 

friction required to maintain a velocity difference of 1 cm/sec between 

two parallel layers, 1 cm apart and each having an area of 1 sq cm. 

Units of Viscosity 

We know that: η = f .dx / A .dv. Hence, η = dynes × cm / cm2 ×cm/sec. 

Therefore we may write: η = dynes cm-2 sec or the units of viscosity are 

dynes sec cm-2. This quantity is called 1 Poise. 

f = m × a 

η = (m × a × dx) / ( A .dv) 

Hence, η = g cm-1 s-1 

Therefore, η = 1 poise 
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In S.I. units, η = f .dx / A .dv 

=  N × m / ( m2 ×ms-1) 

Therefore we may write, η = N m-2 or Pas 

1 Poise = 1 g cm-1s-1 = 0.1 kg m-1 s-1  

Solved Examples For You 

Q: The space between two large horizontal metal plates 6 cm apart, is 

filled with a liquid of viscosity 0.8N/m. A thin plate of surface 

area 0.01m2 is moved parallel to the length of the plate such that the 

plate is at a distance of 2m from one of the plates and 4cm from the 

other. If the plate moves with a constant speed of 1ms−1, then: 

A. Fluid layer with the maximum velocity lies midway between the 
plates. 

B. The layer of the fluid, which is in contact with the moving plate, has 
the maximum velocity. 

C. That layer which is in contact with the moving plate and is on the 
side of the farther plate is moving with maximum velocity. 

D. Fluid in contact with the moving plate and which is on the side of the 
nearer plate is moving with maximum velocity. 

Solution: B) The two horizontal plates are at rest. Also, the plate in 

between the two plates, is moving ahead with a constant speed of 1ms−1. 

The layer closest to this plate will thus move with the maximum 

velocity. 
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Steady flow 
Steady flow is the flow in low speed such that its adjacent layers slide smoothly 

with respect to each other , Streamline is an imaginary line shows the path of any 

part of the fluid during its steady flow inside the tube , The densityof the 

streamlines at a point is the number of streamlines crossing perpendicular a unit 

area point . 

Characteristics of the streamlines 
1. Imaginary lines do not intersect . 
2. The tangent at any point along the streamline determines the direction of the 

instantaneous velocity of each particle of the liquid at that point . 
3. The number of streamlines does not change as the cross-section area changes 

, while the streamlines density at a point changes as the cross-section area 

changes and expresses the flow velocity of the liquid at that point . 
4. Therefore , streamlines cram up at points of high velocity ( its density 

increases ) and keep apart at points of low velocity ( its density decreases ) , 

This means that speed of fluid at any point inside the tube is directly 

proportional to the density of streamlines at that point . 

Conditions of the steady flow  
1. Liquid should fill the tube completely . 
2. Speed of the liquid at a certain point in the tube is constant and does not 

change as the time passes . 
3. Flow is irrotational , there is no vertex motion . 
4. No frictional forces between the layers of the nonviscous liquid . 
5. Flow such that the amount of liquid entering the tube equals that emerging 

out of it in the same period of time because the liquid is incompressible . 
Flow rate is the quantity of liquid flowing through a certain cross-sectional area 

of a tube in one second , Flow rate could be volume flow rate and mass flow rate . 
Volume flow rate ( Qv ) is the volume of fluid flowing through a certain area in 

one second , measuring unit is m³/s , When volume rate of a liquid = 0.05 m³/s , It 

means that volume of fluid flowing through a certain area in one second = 0.05 

m³ . 
Mass flow rate ( Qm ) is the mass of fluid flowing through a certain area in one 

second , measuring unit is kg/s , when mass flow rate of a liquid = 3 kg/s , It 

means that mass of fluid flowing through a certain area in one second = 3 kg . 

Calculating the flow rate at any cross-sectional area : 
Considering a quantity of liquid of density ( ρ ) , volume ( Vol ) and mass ( m ) 

flowing in speed ( v ) to move a distance ( Δx ) in time ( Δt ) through cross-

sectional area of the tube ( A ) . 

https://www.online-sciences.com/the-matter/the-density-of-matter-and-life-applications-of-density/
https://www.online-sciences.com/physics/static-objects-moving-objects-types-of-motion-and-velocity/
https://www.online-sciences.com/physics/static-objects-moving-objects-types-of-motion-and-velocity/
https://www.online-sciences.com/physics/static-objects-moving-objects-types-of-motion-and-velocity/
https://www.online-sciences.com/physics/properties-of-fluids-factors-affecting-density-and-pressure/
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From the definition of the volume flow rate : 
Qv = ΔVol / Δt 
ΔVol = A Δx = A v Δt     , where Δx = v Δt   
∴ Qv = ( A v Δt ) / Δt 
Qv = A v 
From the definition of the mas flow rate : 
Qm = Δm / Δt 
Δm = ρ ΔVol 
ΔVol = A Δx = A v Δt 
Qm = ( ρ A v Δt  ) / Δt 
Qm = ρ A v = ρ Qv 
The amount of liquid entering the tube = that emerging out of it in the same 

period of time . 
Flow rate ( volume or mass ) is constant at any cross-sectional area and this is 

called law of conservation of mass that leads to the continuity equation . 

Deduction of the continuity equation ( relation between flow speed of 

liquid and cross-sectional area of the tube )  
Imagine that a tube has a fluid in a steady flow where the previous conditions of 

steady flow are verified . 
Consider two-cross sectional areas ( A1 , A2 ) perpendicular to the streamlines : 
At first cross-sectional area ( A1 ) , the speed of liquid through it ( v1 ) then : 
The volume flow rate :  Qv = A1 v1  , The mass flow rate : Qm = ρ A1 v1 
At second cross-sectional area ( A2 ) , the speed of liquid through it ( v2 ) then : 
The volume flow rate : Qv = A2 v2 , the mass flow rate : Qm = ρ A2 v2 
The flow rate ( volume or mass ) is constant in case of steady flow . 
 ρ A1 v1 = ρ A2 v2 
A1 v1 = A2 v2 
 v1 / v2 = A2 / A1 , this relation is called the continuity equation  

 

https://www.online-sciences.com/physics/steady-flow-turbulent-flow-and-applications-on-the-continuity-equation/attachment/continuity-equation-52/
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Continuity equation 

The continuity equation 
The velocity of a fluid in a steady flow at any point is inversely proportional to 

cross-sectional area of the tube at that point . 
Based on the previous relation ( A1 v1 = A2 v2 ) if : 
The tube is cylindrical having two cross-sectional area one is wide and the other 

narrow . 
A1 v1 = A2 v2 
r²1 v1 = r²2 v2 
The tube is branched into ( n ) branches of the same cross-sectional area . 
A1 v1 = n A2 v2 
r²1 v1 = n r²2 v2 
The tube is branched into number of branches of different cross-sectional area  
A1 v1 = A2 v2 + A3 v3 + A4 v4 
r²1 v1 = r²2 v2 + r²3 v3 + r²4 v4 
Where : A = π r² , r = radius of the tube . 
The speed is inversely proportional to the cross-sectional area ( v ∝ 1/A ) , so , the 

liquid flows slowly in the tube when its cross-sectional area is big and vice versa . 

Applications on the continuity equation 
Flow of blood is faster in the main artery than in the blood capillaries because 

the sum of cross-sectional areas of blood capillaries is greater than the cross-

sectional area of the main artery and since ( v ∝ 1/A ) , so , speed 

of blooddecreases in the blood capillaries to allow exchange 

of oxygen and carbon dioxide gases in the tissues to supply it with food . 
Design of the gas opening in the stoves , Opening are small so that the gas rushes 

fast out of it in a high speed ( v ∝ 1/A ) . 

Turbulent flow 
The turbulent flow is the flow when the speed of the fluid exceeds a certain limit 

and is characterized by small eddy currents , The steady flow of a fluid ( liquid 

or gas ) becomes turbulent flow if : 
1. The speed of the fluid exceeded a certain limit and is characterized by small 

eddy currents . 
2. A gas transfers from small space to a wider space . 
3. A gas becomes turbulent when it transfers from high pressure to 

low pressure . 
Applications on the pressure at a point ( Connected vessels , U-shaped tube & 

Mercuric barometer ) 
Applications on pascal’s principle , Manometer types and uses 
Factors affecting the force of viscosity and Applications on the viscosity 
What is a Reynolds’s Number? 

https://www.online-sciences.com/physics/static-objects-moving-objects-types-of-motion-and-velocity/
https://www.online-sciences.com/the-living-organisms/the-structure-and-the-function-of-the-blood-in-the-circulatory-system/
https://www.online-sciences.com/the-living-organisms/the-structure-and-the-function-of-the-blood-in-the-circulatory-system/
https://www.online-sciences.com/the-matter/the-importance-and-uses-of-oxygen-gas-in-our-life/
https://www.online-sciences.com/earth-and-motion/what-are-the-sources-of-carbon-dioxide-gas/
https://www.online-sciences.com/physics/applications-on-the-pressure-at-a-point-connected-vessels-u-shaped-tube-mercuric-barometer/
https://www.online-sciences.com/physics/properties-of-fluids-factors-affecting-density-and-pressure/
https://www.online-sciences.com/physics/applications-on-the-pressure-at-a-point-connected-vessels-u-shaped-tube-mercuric-barometer/
https://www.online-sciences.com/physics/applications-on-the-pressure-at-a-point-connected-vessels-u-shaped-tube-mercuric-barometer/
https://www.online-sciences.com/physics/applications-on-pascals-principle-manometer-types-and-uses/
https://www.online-sciences.com/physics/factors-affecting-the-force-of-viscosity-and-applications-on-the-viscosity/
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Reynolds’s number is a dimensionless quantity that is used to determine the type of flow pattern as 
laminar or turbulent while flowing through a pipe. Reynolds’s number is defined by the ratio of inertial 
forces to that of viscous forces. 

It is given by the following relation: 

ReynoldsNumber=InertialForceViscousForce 

Re = ρVD/μ 

Where, 

Re is the Reynolds’s number 

ρ is the density of the fluid 

V is the velocity of flow 

D is the pipe diameter 

μ is the viscosity of the fluid 

If the Reynolds’s number calculated is high (greater than 2000), then the flow through the pipe is 
said to be turbulent. If Reynolds’s number is low (less than 2000), the flow is said to be laminar. 
Numerically, these are acceptable values, although in general the laminar and turbulent flows are 
classified according to a range. Laminar flow falls below Reynolds’s number of 1100 and turbulent 
falls in a range greater than 2200. 

Laminar flow is the type of flow in which the fluid travels smoothly in regular paths. Conversely, 
turbulent flow isn’t smooth and follows an irregular maths with lots of mixing. 

An illustration depicting laminar and turbulent flow is given below. 

The Reynolds’s number is named after the British physicist Osborne Reynolds’s. He discovered this 
while observing different fluid flow characteristics like flow a liquid through a pipe and motion of an 
airplane wing through the air. He also observed that the type of flow can transition from laminar to 
turbulent quite suddenly. 

Try the following application based problem to understand this concept. 

Problem 1- Calculate Reynolds’s number, if a fluid having viscosity of 0.4 Ns/m2  and relative 
density of 900 Kg/m3  through a pipe of 20mm with a velocity of 2.5  2.5 m/ 

https://byjus.com/physics/laws-of-motion/
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From the above answer, we observe that the Reynolds number value is less than 2000. Therefore, 
the flow of liquid is laminar. 

For more concepts in Physics, check out our YouTube Channel with loads of video modules to help 
you out only at BYJU’S. 

What is Bernoulli's equation? 

This equation will give you the powers to analyze a fluid flowing up and down through all kinds of 
different tubes. 

What is Bernoulli's principle? 

Bernoulli's principle is a seemingly counterintuitive statement about 

how the speed of a fluid relates to the pressure of the fluid. Many 

people feel like Bernoulli's principle shouldn't be correct, but this might 

be due to a misunderstanding about what Bernoulli's principle actually 

says. Bernoulli's principle states the following, 

Bernoulli's principle: Within a horizontal flow of fluid, points of 

higher fluid speed will have less pressure than points of slower 

fluid speed.  

[Why does it have to be horizontal?] 

javascript:void(0)
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So within a horizontal water pipe that changes diameter, regions where 

the water is moving fast will be under less pressure than regions where 

the water is moving slow. This sounds counterintuitive to many people 

since people associate high speeds with high pressures. But, we'll show 

in the next section that this is really just another way of saying that 

water will speed up if there's more pressure behind it than in front of it. 

In the section below we'll derive Bernoulli's principle, show more 

precisely what it says, and hopefully make it seem a little less 

mysterious. 

How can you derive Bernoulli's principle? 

Incompressible fluids have to speed up when they reach a narrow 

constricted section in order to maintain a constant volume flow rate. 

This is why a narrow nozzle on a hose causes water to speed up. But 

something might be bothering you about this phenomenon. If the water 

is speeding up at a constriction, it's also gaining kinetic energy. Where 

is this extra kinetic energy coming from? The nozzle? The pipe?  

The only way to give something kinetic energy is to do work on it. This 

is expressed by the work energy principle. 

So if a portion of fluid is speeding up, something external to that 

portion of fluid must be doing work it. What force is causing work 

to be done on the fluid? Well, in most real world systems there 
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are lots of dissipative forces that could be doing negative work, 

but we're going to assume for the sake of simplicity that these 

viscous forces are negligible and we have a nice continuous and 

perfectly laminar (streamline) flow. Laminar (streamline) flow 

means that the fluid flows in parallel layers without crossing 

paths. In laminar streamline flow there is no swirling or vortices 

in the fluid. OK, so we'll assume we have no loss in energy due to 

dissipative forces. In that case, what non-dissipative forces could be 

doing work on our fluid that cause it to speed up? The pressure from 

the surrounding fluid will be causing a force that can do work and 

speed up a portion of fluid. 

Consider the diagram below which shows water flowing along streamlines 

from left to right. As the outlined volume of water enters the constricted 

region it speeds up. The force from pressure P_1P1 on the left side of the 

shaded water pushes to the right and does positive work since it pushes in the 

same direction as the motion of the shaded fluid. The force from 

pressure P_2P2 on the right side of the shaded fluid pushes to the left and 

does negative work since it pushes in the opposite direction as the motion of 

the shaded fluid. 
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We know that the water must speed up (due to the continuity equation) and 

therefore have a net positive amount of work done on it. So the work done by 

the force from pressure on the left side must be larger than the amount of 

negative work done by the force from pressure on the right side. This means 

that the pressure on the wider/slower side P_1P1 has to be larger than the 

pressure on the narrow/faster side P_2P2.  

This inverse relationship between the pressure and speed at a point in a 

fluid is called Bernoulli's principle. 

Bernoulli's principle: At points along a horizontal streamline, higher 

pressure regions have lower fluid speed and lower pressure regions 

have higher fluid speed. 
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It might be conceptually simplest to think of Bernoulli's principle as the 

fact that a fluid flowing from a high pressure region to a low pressure 

region will accelerate due to the net force along the direction of motion. 

The idea that regions where the fluid is moving fast will have lower 

pressure can seem strange. Surely, a fast moving fluid that strikes you 

must apply more pressure to your body than a slow moving fluid, right? 

Yes, that is right. But we're talking about two different pressures now. 

The pressure that Bernoulli's principle is referring to is the internal 

fluid pressure that would be exerted in all directions during the flow, 

including on the sides of the pipe. This is different from the pressure a 

fluid will exert on you if you get in the way of it and stop its motion.  

[I still don't get the difference.] 

Note that Bernoulli's principle does not say that a fast moving 

fluid can't have significantly high pressures. It just says that the 

pressure in a slower region of that same flowing system must have even 

larger pressure than the faster moving region. 

What is Bernoulli's equation? 

Bernoulli's equation is essentially a more general and mathematical 

form of Bernoulli's principle that also takes into account changes in 

gravitational potential energy. We'll derive this equation in the next 

section, but before we do, let's take a look at Bernoulli's equation and 

get a feel for what it says and how one would go about using it. 

javascript:void(0)
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Bernoulli's equation relates the pressure, speed, and height of any two 

points (1 and 2) in a steady streamline flowing fluid of density ρ. 

Bernoulli's equation is usually written as follows, 



103 | P a g e  

 



104 | P a g e  

 



105 | P a g e  

 



106 | P a g e  

 



107 | P a g e  

 



108 | P a g e  

 



109 | P a g e  

 



110 | P a g e  

 



111 | P a g e  

 



112 | P a g e  

 



113 | P a g e  

 



114 | P a g e  

 

********************************************** 

 

 

 

 

 

 

 

 

 

 

 

UNIT-4 

Simple Harmonic Motion 

We see different kinds of motion every day. The motion of the 
hands of a clock, motion of the wheels of a car, etc. Did you ever 
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notice that these types of motion keep repeating themselves? 
Such motions are periodic in nature. One such type of periodic 
motion is simple harmonic motion (S.H.M.). But what is S.H.M.? 
Let’s find out. 

 

Introduction to Periodic Motion H 

 

SHM as a projection of circular motion I H 

 

VST Simple Harmonic Motion Problem 4 and its Solution 

  

Periodic Motion and Oscillations 

A motion that repeats itself in equal intervals of time is periodic. We 

need to know what periodic motion is to understand simple harmonic 

motion. 

Periodic motion is the motion in which an object repeats its path in 

equal intervals of time. We see many examples of periodic motion in 

our day-to-day life. The motion of the hands of a clock is periodic 

motion. The rocking of a cradle, swinging on a swing, leaves of a tree 

moving to and fro due to wind breeze, these all are examples of periodic 

motion. 

The particle performs the same set of movement again and again in a 

periodic motion. One such set of movement is called an Oscillation. A 

great example of oscillatory motion is Simple Harmonic Motion. Let’s 

learn about it below. 
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Simple Harmonic Motion (S.H.M.) 

When an object moves to and fro along a line, the motion is called 

simple harmonic motion. Have you seen a pendulum? When we swing 

it, it moves to and fro along the same line. These are called oscillations. 

Oscillations of a pendulum are an example of simple harmonic motion. 

Now, consider there is a spring that is fixed at one end. When there is 

no force applied to it, it is at its equilibrium position. Now, 

 If we pull it outwards, there is a force exerted by the string that is 
directed towards the equilibrium position. 

 If we push the spring inwards, there is a force exerted by the string 
towards the equilibrium position. 

  

 In each case, we can see that the force exerted by the spring is 

towards the equilibrium position. This force is called the restoring 

force. Let the force be F and the displacement of the string from 

the equilibrium position be x. 

Therefore, the restoring force is given by, F= – kx (the negative sign 

indicates that the force is in opposite direction). Here, k is the constant 

called the force constant. Its unit is N/m in S.I. system and dynes/cm in 

C.G.S. system. 



117 | P a g e  

 

Linear Simple Harmonic Motion 

Linear simple harmonic motion is defined as the linear periodic motion 

of a body in which the restoring force is always directed towards the 

equilibrium position or mean position and its magnitude is directly 

proportional to the displacement from the equilibrium position. All 

simple harmonic motions are periodic in nature but all periodic motions 

are not simple harmonic motions. 

Now, take the previous example of the string. Let its mass be m. The 

acceleration of the body is given by, 

a = F/m = – kx/m = – ω2x 

 

Here, k/m = ω2 (ω is the angular frequency of the body) 

Concepts of Simple Harmonic Motion (S.H.M) 

 Amplitude: The maximum displacement of a particle from its 
equilibrium position or mean position is its amplitude. Its S.I. unit is 
the metre. The dimensions are [L1M0 T0]. Its direction is always away 
from the mean or equilibrium position. 

 Period: The time taken by a particle to complete one oscillation is its 
period. Therefore, period if S.H.M. is the least time after which the 
motion will repeat itself. Thus, the motion will repeat itself after nT. 
where n is an integer. 

 Frequency: Frequency of S.H.M. is the number of oscillations that a 
particle performs per unit time. S.I. unit of frequency is hertz or 
r.p.s(rotations per second). Its dimensions are [L0M0T-1]. 
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 Phase: Phase of S.H.M. is its state of oscillation. Magnitude and 
direction of displacement of particle represent the phase. The phase 
at the beginning of the motion is known as Epoch(α) 

Difference between Periodic and Simple Harmonic 
Motion 

Periodic Motion Simple Harmonic Motion 

In the periodic motion, the displacement 
of the object may or may not be in the 
direction of the restoring force. 

In the simple harmonic motion, the 
displacement of the object is always in 
the opposite direction of the restoring 
force. 

The periodic motion may or may not be 
oscillatory. 

Simple harmonic motion is always 
oscillatory. 

Examples are the motion of the hands of 
a clock, the motion of the wheels of a 
car, etc. 

Examples are the motion of a pendulum, 
motion of a spring, etc. 

 

Solved Questions for You 

Q: Assertion(A): In simple harmonic motion, the motion is to and fro 

and periodic 

Reason(R): Velocity of the particle V = ω√A2 – x2 where x is 

displacement as measured from the extreme position 

Chose the right answer: 

a. Both a and B are true and R is the correct explanation of A. 

b. Both A and B are true and R is not the correct explanation of A. 

c. A is true and R is false. 

d. A is false and R is true. 

Solution: c) A is true and R is false. V = ω√A2 – x2 is measured from the 

mean position. SHM involves to and fro periodic motion. 
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Product of Inertia 

Product Of Inertia Of A Mass 

For an object rotating about an axis, the resistance of a body to accelerate is called inertia of mass. It is 

the product of rotating object's mass and square of the span between axis of rotation and mass centre. It 

has dimensional unit of . 

Inertia of mass,  

Consider a rigid body B whose unit vectors and mass centre are depicted in the figure below. 

 

Moment of inertia of a mass about x-axis,  

Moment of inertia of a mass about y-axis,  

Moment of inertia of a mass about z-axis,  

Here x, y and z are the position vector's components  

For any rigid body the product of inertia is given by 

For x-y plane:  

For x-z plane:  

For y-z plane:  

Product of inertia of mass is the symmetric measure for a body. If any one of the three planes is a 

symmetric plane, then the product of inertia of the perpendicular planes are zero. If X-Y plane is 

symmetric then  and  

In case of revolution bodies, the body will be symmetric about two axes, hence two planes will be 

symmetric. In such case the product of inertia, for all three planes is zero.  

Principal Axes of Inertia 
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UNIT-5 
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Much of the literature of relativity uses the 

symbols β and γ as defined here to simplify the writing of relativistic 

relationships. 

Variation of Mass with Velocity 

Consider two frames of references S and S'. Further, S' is moving with constant velocity v along X-direction. To explain the variation of mass with velocity, 

consider the collision of two exactly similar balls A and B, each of mass m, moving in opposite direction along X-axis with equal speed u' in frame S'. After 

collision they coalesce into one body. 

Applying the, law of conservation of momentum on the collision of the balls in frame s', we have 
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After collision, the coalesced mass must be at rest in frame S'. Hence, it 
moves with velocity v in frame S. Let u1,u2 be the velocities and m1, m2 be 
the masses of balls A and B, respectively, in frame S. Using the law of 
addition of velocities, the above velocities can be written as 

Applying the law of conservation of momentum 
on the collision of the balls in frame s, we have 

 m1u1 + m2u2 = (m1 + m2)v....(3) 

 Substituting u1 and u2 values from Equations (1) and (2), we have 
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The above equation makes a relationship between the masses of balls in frame S and 
their velocities in frame S'. Now, to obtain relation between masses of balls and their 
velocities in frame S, we proceed as follows. Squaring Equation (1) 

and using the above equation, the value 
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Therefore, 

 
Similarly, using equation (2) we get 

 
Dividing Equation (6) by Equation (5) and taking square root throughout, 
we have 

 
Comparing Equations (4) and (7), we have 
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Suppose, m2 is at rest in frame s, then u2 = 0 and m2 = m0 (say) where m0 is 
the rest mass of the ball B, thenEquation (19.48) becomes 

 
As both the balls are similar, hence the rest masses of both balls are the 
same, so we can write the rest mass of m2 is equal to rest mass of m1, that is 
equal to mo. Then, Equation (9) becomes 

Here, m1 is the mass of ball A when it is moving with velocity u1 in 
frame s. After collision, the coalescent mass containing mass of ball A moves with velocity v in frame s. 

In general, if we take the mass of ball A as m, when it is moving with velocity v in frame s, then 

where m0 is the rest mass of the body and m is the effective mass. 

Equation (11) is the relativistic formula for the variation of mass with velocity. Here, we see some special 
cases: 

Case (i): When the velocity of the body, v is very small compared to velocity of height, c, then v2/c2 is 
negligible compared to one. Therefore, 

 m = m0*  

Case (ii): If the velocity of the body v is comparable to the velocity of light c, 

then  is less than one, so, m> mo. 

The mass of a moving body appears greater than its rest mass. 

Case (iii): Suppose the velocity of a body is equal to velocity of light, c, then, it possess infinite mass. 
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The effective mass of particles has been experimentally verified by using particle accelerators in case of 
electrons and protons by increasing their velocities very close to velocity of light. 

 

Aryabhatta was an extraordinary teacher and scholar who had immense 

knowledge about mathematics and astronomy. He suggested the heliocentric theory 

which proved that the sun is located in the centre of the solar system and all the 

planets revolve around it. In fact he made this discovery way before Copernicus made 

this discovery in the West. 

Aryabhatta was born in Kerala and lived from 476 AD to 550 AD, he completed his 

education from the ancient university of Nalanda and later he moved to Bihar and 

continued his studies in the great centre of learning located in close proximity to 

Kusumapura in Bihar and lived in Taregana District in Bihar in the late 5th and early 
6th century. 

His contribution to the astronomy 

The astronomical calculations and deductions suggested by Aryabhatta are 

extraordinary by the fact that he didn’t have any modern equipment or instrument to 

do it. He had a very sharp brain and his dedication and hard work led him to solve the 

various mysteries of the solar system. He also deduced that the earth is round in shape 

and rotates along its own axis, which forms the existence of day and night. Many 

superstitious beliefs were challenged by him and he presented scientific reasons to 
prove them wrong. 

He also said that the moon has no light and shines because it reflects light from the 

sun. He also proved wrong the false belief that eclipse is caused because of the 

shadows formed by the shadows cast by the earth and the moon. Aryabhatta used 

epicycles in a similar manner to the Greek Philosopher Ptolemy to illustrate the 

inconsistent movement of some planets. This great astronomer wrote the famous 

treatise Aryabhatiya, which was based on astronomy in 499 AD. This treatise was 

acknowledged as a masterpiece. In honour of this excellent work Aryabhatta was 

made head of the Nalanda University by the Gupta ruler Buddhagupta. 
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Gilbert and the amber force: 1600 

 

The year 1600 is a good one for William Gilbert. He is appointed court physician 

to Queen Elizabeth, and the summary of his life-long research into magnetism is 

published as De magnete, magneticisque corporibus, et de magno magnete 

tellure (Of the magnet, of magnetic bodies, and of the earth as a great magnet). 

 

As the title states, Gilbert's work has led him to the grand conclusion that 

compasses behave as they do because the earth itself is a vast magnet. He 

introduces the term 'magnetic pole', and states that the magnetic poles lie near the 

geographic poles. 

 

Gilbert describes useful practical experiments, revealing how iron can be 

magnetized for use in compasses without relying on rare and expensive lodestone. 

Hammering the metal will do the trick, if the iron is correctly aligned with the 

earth's magnetic field. 

 

Gilbert's researches also involve him in the mysterious property of amber, 

recognized 2000 years previously by Greek scientists. He identifies this as a force 

and coins a term for it from elektron, the Greek for amber. He calls it, in an 

invented Latin phrase, vis electrica- the 'amber force'. Electricityhas found its 

name. 

 

Galileo and the Discorsi: 1634-1638 

 

In December 1633 Galileo is place under house arrest, on the pope's orders, 

because of his work on astronomy. Finding himself confined to his small estate at 

Arcetri near Florence, his response is typically positive. He settles down to explain 

and prove his early and less controversial discoveries in the mechanical sciences. 

 

Two are particularly well known. The first he is said to have observed as a student 

in Pisa, when he watches a lamp swinging in the cathedral, times it by his own 

pulse, and discovers that each swing takes the same amount of time regardless of 

how far the lamp travels. At Arcetri he demonstrates this principle of the pendulum 

experimentally, and suggests its possible use in relation to clocks.  

  

 

http://www.historyworld.net/wrldhis/PlainTextHistories.asp?gtrack=pthc&ParagraphID=dpw#dpw
http://www.historyworld.net/wrldhis/PlainTextHistories.asp?gtrack=pthc&ParagraphID=krk#krk
http://www.historyworld.net/wrldhis/PlainTextHistories.asp?gtrack=pthc&ParagraphID=hid#hid
http://www.historyworld.net/wrldhis/PlainTextHistories.asp?gtrack=pthc&ParagraphID=hqr#hqr
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His other most famous discovery in physics, proved theoretically in about 1604 

when he is professor of mathematics in Padua, is that bodies falling in a vacuum do 

so at the same speed and at a uniform rate of acceleration. (There is as yet no 

vacuum in which to demonstrate this law, but Boyle is able to do so later in the 

century.) While at Padua Galileo also works out the laws of ballistics, or the 

dynamics of objects moving through the air in a curve rather than falling directly to 

earth. 

 

Written up and proved mathematically during 1634, these theorems are published 

in Leiden in 1638 as the Discorsi e dimostrazioni matematichè intorno à due nuove 

scienze attenenti alla mecanica et i movementi locali.  

  

 

 

 

 

 

 

 

Galileo's title claims to introduce two new sciences, mechanics and 'local 

movements', and his book stands at the start of mathematical physics. He is the 

first to use mathematics to understand and explain physical phenomena, and he is 

the first to make rigorous use of experiment to check results provided by theory. 

The attractive notion of his dropping weights from the leaning tower of Pisa, to 

check on the behaviour of falling bodies, is only a legend. But he certainly, if more 

mundanely, rolls balls down inclined planes for the same purpose. 

 

Galileo provides the foundation on which Newton (born in the year of Galileo's 

death) soon builds.  

  

http://www.historyworld.net/wrldhis/PlainTextHistories.asp?gtrack=pthc&ParagraphID=kpt#kpt
http://www.historyworld.net/wrldhis/PlainTextHistories.asp?gtrack=pthc&ParagraphID=kra#kra
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Barometer and atmospheric pressure: 1643-

1646 

 

Like many significant discoveries, the principle of the barometer is observed by 

accident. Evangelista Torricelli, assistant to Galileo at the end of his life, is 

interested in why it is more difficult to pump water from a well in which the water 

lies far below ground level. He suspects that the reason may be the weight of the 

extra column of air above the water, and he devises a way of testing this theory. 

 

He fills a glass tube with mercury. Submerging it in a bath of mercury, and raising 

the sealed end to a vertical position, he finds that the mercury slips a little way 

down the tube. He reasons that the weight of air on the mercury in the bath is 

supporting the weight of the column of mercury in the tube.  

  

 

 

 

 

 

 

 

 

 

If this is true, then the space in the glass tube above the mercury column must be a 

vacuum. This plunges him into instant controversy with traditionalists, wedded to 

the ancient theory - going as far back as Aristotle - that 'nature abhors a vacuum'. 

But it also encourages von Guericke, in the next decade, to develop the vacuum 

pump. 

 

The concept of variable atmospheric pressure occurs to Torricelli when he notices, 

http://www.historyworld.net/wrldhis/PlainTextHistories.asp?gtrack=pthc&ParagraphID=kpr#kpr
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in 1643, that the height of his column of mercury sometimes varies slightly from 

its normal level, which is 760 mm above the mercury level in the bath. Observation 

suggests that these variations relate closely to changes in the weather. The 

barometer is born.  

  

 

 

 

 

 

 

 

With the concept thus established that air has weight, Torricelli is able to predict 

that there must be less atmospheric pressure at higher altitudes. It is not hard to 

imagine an experiment which would test this, but the fame for proving the point in 

1646 attaches to Blaise Pascal - though it is not even he who carries out the 

research. 

 

Having a weak constitution, Pascal persuades his more robust brother-in-law to 

carry a barometer to different levels of the 4000-foot Puy de Dôme, near Clermont, 

and to take readings. The brother-in-law descends from the mountain with the 

welcome news that the readings were indeed different. Atmospheric pressure 

varies with altitude.  

  

 

 

 

 

 

 

Von Guericke and the vacuum: 1654-1657 

 

Spectators in the town square of Regensburg, on 8 May 1654, are treated to 

perhaps the most dramatic demonstration in the history of science. Otto von 

Guericke, burgomaster of Magdeburg and part-time experimenter in physics, is 

about to demonstrate the reality of a vacuum. 

 

Aristotle declared that there can be no such thing as empty space, but von Guericke 
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has spent several years perfecting an air pump which can achieve just that. He now 

produces two hollow metal hemispheres and places them loosely together. There is 

no locking device. Von Guericke works for a while at his pump, attached by a tube 

to one of the hemispheres. He then signals that he is ready.  

  

 

 

 

 

 

 

 

 

 

Sixteen horses are harnessed in two teams of eight. Each team is attached to one of 

the hemispheres. Whipped in opposite directions, the horses fail to pull the sphere 

apart. Yet when von Guericke undoes a nozzle of some kind, the two halves 

separate easily. 

 

A mysterious point has been very forcefully made. Von Guericke's experiments are 

first described in a book of 1657 (Mechanica Hydraulica-Pneumatica by Kaspar 

Schott). The vacuum thus becomes available to the scientific community as an 

experimental medium. Von Guericke himself uses it to demonstrate that a bell is 

muffled in a vacuum and a flame extinguished. Robert Boyle, too, soon borrows 

the device.  

  

 

 

 

 

 

 

Robert Boyle: 1661-1666 

 

The experimental methods of modern science are considerably advanced by the 

work of Robert Boyle during the 1660s. He is skilful at devising experiments to 

test theories, though an early success is merely a matter of using von Guericke's air 

pump to create a vacuum in which he can observe the behaviour of falling bodies. 

http://www.historyworld.net/wrldhis/PlainTextHistories.asp?gtrack=pthc&ParagraphID=kpr#kpr
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He is able to demonstrate the truth of Galileo's proposition that all objects will fall 

at the same speed in a vacuum. 

 

But Boyle also uses the air pump to make significant discoveries of his own - most 

notably that reduction in pressure reduces the boiling temperature of a liquid 

(water boils at 100° at normal air pressure, but at only 46°C if the pressure is 

reduced to one tenth).  

  

 

 

 

 

 

 

 

 

 

Boyle's best-known experiment involves a U-shaped glass tube open at one end. 

Air is trapped in the closed end by a column of mercury. Boyle can show that if the 

weight of mercury is doubled, the volume of air is halved. The conclusion is the 

principle known still in Britain and the USA as Boyle's Law - that pressure and 

volume are inversely proportional for a fixed mass of gas at a constant 

temperature. 

 

Boyle's most famous work has a title perfectly expressing a correct scientific 

attitude. The Sceptical Chymistappears in 1661. Boyle is properly sceptical about 

contemporary theories on the nature of matter, which still derive mainly from the 

Greek theory of four elements. 

  

 

 

 

 

 

 

 

His own notions are much closer to the truth. Indeed it is he who introduces the 

concept of the element in its modern sense, suggesting that such entities are 

http://www.historyworld.net/wrldhis/PlainTextHistories.asp?gtrack=pthc&ParagraphID=kri#kri
http://www.historyworld.net/wrldhis/PlainTextHistories.asp?gtrack=pthc&ParagraphID=aka#aka
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'primitive and simple, or perfectly unmingled bodies'. Elements, as he imagines 

them, are 'corpuscles' of different sorts and sizes which arrange themselves into 

compounds - the chemical substances familiar to our senses. Compounds, he 

argues, can be broken down into their constituent elements. Boyle's ideas in this 

field are further developed in his Origin of Forms and Qualities(1666). 

 

Chemistry is Boyle's prime interest, but he also makes intelligent contributions in 

the field of pure physics.  

  

 

 

 

 

 

 

 

In an important work of 1663, Experiments and Considerations Touching Colours, 

Boyle argues that colours have no intrinsic identity but are modifications in light 

reflected from different surfaces. (This is demonstrated within a few years 

by Newton in his work on the spectrum.) 

 

As a man of his time, Boyle is as much interested in theology as science. It comes 

as a shock to read his requirements for the annual Boyle lecture which he founds in 

his will. Instead of discussing science, the lecturers are to prove the truth of 

Christianity against 'notorious infidels, viz., atheists, theists, pagans, Jews and 

Mahommedans'. The rules specifically forbid any mention of disagreement among 

Christian sects.  

  

 

 

 

 

 

 

Newton in the garden: 1665-1666 
 

The Great Plague of 1665 has one unexpected beneficial effect. It causes 

Cambridge university to close as a precaution, sending the students home. A not 

http://www.historyworld.net/wrldhis/PlainTextHistories.asp?gtrack=pthc&ParagraphID=kqy#kqy
http://www.historyworld.net/wrldhis/PlainTextHistories.asp?historyid=154
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particularly distinguished member of Trinity College, who has recently failed an 

examination owing to his feeble geometry, travels home to the isolated 

Woolsthorpe Manor in Lincolnshire.  

 

He spends there the greater part of eighteen months, one of the most productive 

periods in scientific history. With time for uninterrupted concentration, he works 

out the binomial theorem, differential and integral calculus, the relationship 

between light and colour and the concept of gravity. The student is the 22-year-old 

Isaac Newton.  

  

 

 

 

 

 

 

 

 

 

The famous detail of the falling apple in the garden of Woolsthorpe Manor, as the 

moment of truth in relation to gravity, provides the perfect seed for a popular 

legend. But the story is first told in the next century, by Voltaire, who claims to 

have had it from Newton's step-niece. In reality it is the moon which prompts 

Newton's researches into gravity. 

 

Meanwhile his discoveries in relation to light and colour bring him his first fame.  

  

 

 

 

 

 

 

Newton and Opticks: 1666-1672 

 

Returning to Cambridge in 1666, and discussing there his new discoveries, Newton 

wins an immediate reputation. In 1669, when still short of his twenty-seventh 

birthday, he is elected the Lucasian professor of mathematics. His lectures and 

http://www.historyworld.net/wrldhis/PlainTextHistories.asp?gtrack=pthc&ParagraphID=kjk#kjk
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researches are mainly at this stage to do with optics. He invents for his purposes a 

new and more powerful form of telescope using mirrors (the reflecting telescope, 

which becomes the principle of all the most powerful instruments until the 

introduction of radio astronomy).  

 

In 1672 he presents a telescope of this kind to the Royal Societyand is elected a 

member. Later in this same year he describes for the Society his experiments with 

the prism.  

  

 

 

 

 

 

 

 

 

 

In this famous piece of research Newton directs a shaft of sunlight through a prism. 

He finds that it spreads out and splits into separate colours covering the full range 

of the spectrum. If he directs these coloured rays through a reverse prism, the light 

emerging is once again white. However if he isolates any single colour, by sending 

it to the second prism through a narrow slot, it will emerge as that same colour, 

unchanged. 

 

It has often previously been observed that light passing through a medium such as 

a bowl of water can change colour, but it has been assumed that this colour is 

imparted by the glass or water.  

  

 

 

 

 

 

 

 

Newton's reversible experiment proves that the phenomenon is an aspect of light 

itself. Different wavelengths of light have different angles of refraction, with the 
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result that the prism separates them. White light, containing all the wave lengths, 

can be transformed back and forth. Light of a single wave length and colour can 

only remain itself. 

 

It follows from this that the perceived colour of different substances derives from 

the particular wavelengths of light which they reflect to the eye; or, in Newton's 

words, that 'natural bodies are variously qualified to reflect one sort of light in 

greater plenty than another'. The sciences of colour and of spectrum analysis begin 

with this work, which Newton eventually publishes in 1704 as Opticks.  

  

 

 

 

 

 

 

Newton and gravity: 1684-1687 

 

In 1684 Edmund Halleyvisits Newton in Cambridge. Hearing his ideas on the 

motion of celestial bodies, he urges him to develop them as a book. The result is 

the Principia Mathematica (in full Philosophiae Naturalis Principia Mathematica, 

Mathematical Principles of Natural Philosophy), published in 1687. When lack of 

funds in the Royal Society seems likely to delay the project, Halley pays the entire 

cost of printing himself.  

 

The book, one of the most influential in the history of science, derives from the 

young Newton's speculations about the moon during his time at Woolsthorpe 

Manor two decades earlier. 
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The question which stimulated his thoughts was this: what prevents the moon from 

flying out of its orbit round the earth, just as a ball being whirled on a string will 

fly away if the string breaks? The ball, in such an event, flies off at a tangent. 

Newton reasons that the moon can be seen as perpetually falling from such a 

tangent into its continuing orbit round the earth. 

 

He calculates mathematically by how much, on such an analogy, the moon is 

falling every second. He then uses these figures to calculate, on the same principle, 

the probable speed of a body falling in the usual way in our own surroundings. He 

finds that theory and reality match, in his own words, 'pretty nearly'.  

  

 

 

 

 

 

 

 

The word gravity is already in use at this time, to mean the quality of heaviness 

which causes an object to fall. Newton demonstrates its existence now as a 

universal law: 'Any two particles of matter attract one another with a force directly 

proportional to the product of their masses and inversely proportional to the square 

of the distance between them.' 

 

With this observation he introduces the great unifying principle of classical 

physics, capable of explaining in one mathematical law the motion of the planets, 

the movement of the tides and the fall of an apple.  

  

 

 

 

 

 

 

The Leyden jar: 1745-1746 

 

The researches of William Gilbert, at the start of the 17th century, lead eventually 
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to simple machines with which enthusiasts can generate an electric charge by 

means of friction. The current generated will give a stimulating frisson to a lady's 

hand, or can be discharged as a spark. 

 

In 1745 an amateur scientist, Ewald Georg von Kleist, dean of the cathedral in 

Kamien, makes an interesting discovery. After partly filling a glass jar with water, 

and pushing a metal rod through a cork stopper until it reaches the water, he 

attaches the end of the nail to his friction machine.  

  

 

 

 

 

 

 

 

 

 

After a suitable amount of whirring, the friction machine is disconnected. When 

Kleist touches the top of the nail he can feel a slight shock, proving that static 

electricity has remained in the jar. It is the first time that electricity has been stored 

in this way, for future discharge, in the type of device known as a capacitor. 

 

In 1746 the same principle is discovered by Pieter van Musschenbroek, a physicist 

in the university of Leyden. As a professional, he makes much use of the new 

device in laboratory experiments. Though sometimes called a Kleistian jar, it 

becomes more commonly known as the Leyden jar.  

  

 

 

 

 

 

 

 

Within a year or two an improvement is made which gives the capacitor its lasting 

identity. The water in the vessel is replaced by a lining of metal foil, with which 

the metal rod projecting from the jar is in contact. Another layer of metal foil is 
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wrapped round the outside of the jar. The two foils are charged with equal amounts 

of electricity, one charge being positive and the other negative. 

 

The principle of plates bearing opposite charges, and separated only by a narrow 

layer of insulation, remains constant in the development of capacitors - much used 

in modern technology.  

  

 

 

 

 

 

 

Watson and Franklin: 1745-1752 

 

In 1745 the Royal Society in London awards its highest honour, the Copley medal, 

to William Watson for his researches into electricity. It is the fashionable subject 

of the moment, and is about to become more so with the development of the 

Leyden jar. 

 

In 1747 Watson sets up an ambitious experiment to discover the speed at which 

electricity travels. He arranges an electrical circuit more than two miles long, 

linking the positive and negative metal foils of a Leyden jar. There seems to be no 

measurable difference between the completion of the circuit and the moment when 

an observer at the middle of the loop feels the shock. Watson concludes that 

electricity is 'instantaneous'. 

  

 

 

 

 

 

 

 

 

 

His conclusion is not an accurate description of the flow of electricity, but the 

experiment is nonetheless impressive. As the leading figure in electrical research, 



160 | P a g e  

 

Watson is now in touch with an enthusiastic experimenter on the other side of the 

Atlantic, Benjamin Franklin.  

 

Watson and Franklin independently arrive at a new and correct concept of 

electricity - that instead of being created by friction between two surfaces, it is 

something transferred from one to the other, electrically charging both. They see 

electricity as the flow of a substance which can be neither created nor destroyed. 

The total quantity of electricity in an insulated system remains constant.  

  

 

 

 

 

 

 

 

Franklin, a scientist with a popular touch, coins several of the terms which are now 

standard - positive and negative, conductor, battery (in the sense of a series of 

Leyden jars linked for simultaneous charge or discharge). His papers on the 

subject, gathered and published in 1751 as Experiments and Observations on 

Electricity, become the first (and perhaps only) electrical best-seller. Widely read 

in successive English editions, and translated into French, German and Italian, this 

short book makes Franklin an international celebrity. 

 

His reputation is further enhanced, in the following year, when he devises history's 

most dramatic, and dangerous, electrical experiment.  

  

 

 

 

 

 

 

 

The new Leyden jars are powerful enough to generate a spark which is both visible 

and audible. It occurs to many that this effect may be the same as that generated in 

nature in the form of lightning. Franklin invents a way of testing this idea. 
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In Philadelphia, in 1752, he adds a metal tip to a kite and flies it on a wet string 

into a thunder cloud. The bottom of the string is attached to a Leyden jar. The point 

is made when the Leyden jar is successfully charged. For the popular audience 

Franklin makes the effect visible. He attracts sparks from a key attached to the line. 

His fame soars. (But the next two people attempting the experiment are killed.)  

  

 

 

 

 

 

 

 

In conducting his experiment, Franklin already has in mind a practical application 

if the science proves correct. He reasons that if celestial electricity can be attracted 

to a metal point, then a rod projecting from the top of a church steeple, connected 

by a metal strip to the earth, could serve as a conductor for any stroke of lightning 

and thus save the building from harm.  

 

When the British army proposes to construct a magazine at Purfleet for the storage 

of gunpowder, William Watson recommends that this highly explosive building be 

protected by one of Benjamin Franklin's lightning conductors. The proposal is 

accepted. The science of electricity finds the first of its myriad eventual roles in 

everyday life.  

  

 

 

 

 

 

 

Joseph Black and latent heat: 1761 

 

Joseph Black notices that when ice melts it absorbs a certain amount of heat 

without any rise in temperature. He reasons that the heat must have combined with 

the particles of ice and still be present in the water at 0°C. Heat of this kind (as 

Cavendish later perceives) consists of greater activity among the molecules, in a 

form of energy which will be transferred again if the water freezes.  
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Black calls this phenomenon latent heat, and teaches it in his lectures at the 

university of Glasgow from 1761. An important discovery in itself, it also enables 

him to be the first to distinguish between heat (energy transferred from a warmer to 

a colder object) and temperature (the amount of energy present at a given 

moment). 

 

************************************************************ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


